In computer science, a parsing table is the part of a parser that makes decisions about how to treat input tokens in compiler development.
Contents |
A parsing table is a table describing what action its parser should take when a given input comes while it is in a given state. It is a tabular representation of a pushdown automaton that is generated from the context-free grammar of the language to be parsed. This is possible because the set of viable prefixes (that is, the sequence of input that can be set aside before a parser needs to either perform a reduction or return an error) of a context-free language is a regular language, so the parser can use a simple parse state table to recognize each viable prefix and determine what needs to be done next.
A parsing table is used with a stack and an input buffer. The stack starts out empty, and symbols are shifted onto it one by one from the input buffer with associated states; in each step, the parsing table is consulted to decide what action to take.
More simply, an Action table defines what to do when a terminal symbol is encountered, and a goto table defines what to do when a nonterminal is encountered.
The parsing table consists of two parts, the action table and the goto table. The action table takes the state at the top of the stack and the next symbol in the input buffer (called the "lookahead" symbol) and returns the action to take, and the next state to push onto the stack. The goto table returns the next state for the parser to enter when a reduction exposes a new state on the top of the stack. The goto table is needed to convert the operation of the deterministic finite automaton of the Action table to a pushdown automaton.
For example, a parsing table might take a current position in state 1 and an input of "+" from the input buffer, and return instructions to shift the current symbol onto the stack and move to state 4. More precisely, the parser would push the token "+" onto the stack, followed by the symbol 4. Or, for an example of the use of a goto table, the current stack might contain "E+E", which is supposed to reduce to "T". After that reduction, looking up "T" in the goto table row corresponding to the state currently at the top of the stack (that is, the state that was under the "E+E" popped off to do the reduction) would tell the parser to push state 2 on top of "T". Action may be a Reduction, a Shift, or Accept or None.